
Solutions to Simultaneous Diagonalization Worksheet

Math 110 Final Prep by Dan Sparks

I hope you find these problems interesting. I did! Two of them I borrowed from other GSI’s (Mike Hartglass and
Mohammad Safdari). These two problems, as well as one other (Problem 4), have already appeared in the worksheets. The
rest are new and build upon the old ones.

Problem 1 (Mike Hartglass): Let T be an operator on a finite dimensional vector space. Show that T is diago-
nalizable if and only T = a1P1 + · · ·+ akPk where the ai ∈ F are scalars and where the Pi are projections that
commute with each other: i.e., PiPj = PjPi. �

Solution: First, suppose that T is diagonalizable. Let Ei,j denote the matrix with 0’s everywhere except in the
(i, j) spot, where it has a 1. Then

M(T) =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λn

 =

n∑
i=1

λiEi,i

now the Ei,i’s are projections onto one dimensional subspaces and they clearly commute as Ei,iEj,j = 0 for
i 6= j. [Remark: The more conceptual way is to write V =

⊕
λ Null(T − λI) and consider the projections onto

the eigenspaces. What this amounts to is grouping by eigenvalue and factoring out the common eigenvalue
in

∑
λiEi,i to get projections onto subspaces of larger dimension (namely the eigenspaces).]

Conversely, suppose that T = a1P1 + · · · + anPn. We prove by induction that n commuting projections are
simultaneously diagonalizable. For careful detail, see Problem 7, which is a generalization of this. The base
case is clear, as a single projection is diagonalizable. To complete the induction decompose V = V0 ⊕ V1, for
P1’s λ = 0 and λ = 1 eigenspaces respectively. The V0 and V1’s are Pj invariant for j ≥ 2, so we restrict the
n− 1 operators P2, · · · ,Pn each to V0 and V1, simultaneously diagonalize them there, and concatenate bases.

Problem 2 (Mohammad Safdari): Let S, T be self-adjoint operators on a finite dimensional R-inner product
space [or let S, T be normal operators on a finite dimensional C-inner product space]. Suppose also that
ST = TS. Show that S, T are simultaneously orthogonally diagonalizable. That is, show there is an orthonormal
basis consisting of vectors which are eigenvectors for both S and T . �

Solution: See the more general case below.

These were the original two problems which sparked my interest. First, let me point out a generalization of Problem 2
which has an important application in the theory of modular forms. For the curious, it is the space of newforms with the
Petersson inner product, and the operators are the Hecke operators.

Problem 3 (New): Let Si, for i in some index set I, be a collection of normal operators on a finite dimensional
complex inner product space (or self-adjoint on a real inner product space). Suppose, for any i, j ∈ I, that
SiSj = SjSi. Show that the Si are simultaneously orthogonally diagonalizable. That is, show that there exists
an orthonormal basis consisting of vectors which are eigenvectors for every operator Si. [Suggestion: It would
be entirely sufficient for this worksheet to suppose that I is a finite indexing set and use induction.] �

Solution: Induction on the number of operators. The case of one operator is exactly the content of the real and
complex spectral theorems. Suppose the result is true for all integers from 1 to n− 1. Let S1, · · · ,Sn be self
adjoint or normal operators which commute with each other. By the spectral theorems applied to S1 we have
an orthogonal decomposition

Vλ1 ⊕ · · · ⊕ Vλm
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where λ1, · · · , λm are the distinct eigenvalues of S1, and Vλi = Null(S1 − λiI) is the corresponding eigenspace.
Observe that Sj(Vλi) ⊆ Vλi because SjS1 = S1Sj. In detail: let (S1 − λiI)x = 0. Then

(S1 − λiI)Sx = (S1S− λiS)x

= (SS1 − S(λiI))x

= S(S1 − λiI)x

= S(0)

= 0

That means we can restrict the n − 1 operators S2, · · · ,Sn to each Vλi . Using the fact that the adjoint of a
restricted operator is the restriction of the adjoint (see lemma below) we see that the restriction of a self ad-
joint or normal operator is self adjoint or normal, respectively. From here we are able to apply the induc-
tive hypothesis to S2

∣∣
Vλi

, · · · ,Sn
∣∣
Vλi

to produce an orthonormal simultaneous eigenbasis {bi,1, · · · ,bi,ei} for
each Vλi . While the inductive hypothesis only gives us that the bi,j are eigenvectors for S2, · · · ,Sn, notice
that bi,j already lives inside of Vλi , making it an eigenvector also for S1. Therefore the concatenated basis
{b1,1, · · · ,b1,e1 , · · · ,bm,1, · · · ,bm,em} consists of eigenvectors for each S1, · · · ,Sn. Finally, the basis is normal-
ized because it was built up of unit length vectors, and it is orthogonal because bi,j ⊥ bl,k (for i = l this is by
construction, for i 6= l this is because V = Vλ1 ⊕ · · · ⊕ Vλm is an orthogonal direct sum).

Lemma: Let U ⊆ V be a subspace of an inner product space and let T be an operator for which T(U) ⊆ U.
Then (T |U)

∗ = (T ∗)|U. [Here we give U the inner product induced by V .]

Proof: We check, for each u,w ∈ U

〈(T |U)(u),w〉 = 〈T(u),w〉
= 〈u, T ∗(w)〉
= 〈u, (T ∗)|U(w)〉

which implies that (T |U)∗(w) = (T ∗)|U(w).

Recall a problem that I gave on an earlier worksheet.

Problem 4 (Dan Sparks): Let P be a projection on a finite dimensional inner product space. Prove that P is
self-adjoint if and only if it is an orthogonal projection. �

Solution: This was discussed in lecture. To summarize, a projection is diagonalizable and has real eigenvalues
(namely 0 and 1). So a projection is normal if and only if it is self-adjoint (normal operators with real eigen-
values are self-adjoint, self-adjoint operators are automatically normal). A diagonalizable operator is normal
if and only if its eigenspaces are orthogonal to each other by the spectral theorem. Therefore, since projections
are always diagonalizable, P is self adjoint if and only if V0 ⊥ V1 where V0 = Null(P) and V1 = Range(P).

Problem 5 (New): Prove the following orthogonal version of Problem 1. Let T be an operator on a finite
dimensional inner product space. Then T is orthogonally diagonalizable (i.e., has an orthonormal eigenbasis)
if and only if T = a1P1 + · · · + akPk where the ai are scalars and the Pi are orthogonal projections such that
PiPj = PjPi for all i, j. [Suggestion: There’s an easy proof using the preview two exercises.] �

Solution: If T has an orthonormal eigenbasis, then there is an orthogonal direct sum V = Vλ1 ⊕ · · · ⊕ Vλm into
eigenspaces. Let Pi be the projection onto Vλi . Then T =

∑
i λiPi. These are commuting orthogonal projections

because the direct sum is orthogonal. (See also the discussion in the solution of Problem 1.)

For the harder direction, suppose that T = a1P1 + · · · + anPn. where the Pi’s are commuting orthogonal
projections. By Problem 4, the Pi’s are self-adjoint. Since they commute, by Problem 3, they are simultaneously
orthogonally diagonalizable. Take {b1, · · · ,bk} a simultaneous orthogonal eigenbasis, and notice that with
respect to this basisM(T) is a linear combination of diagonal matrices and hence, diagonal.
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Problem 6 (New): Let T be a diagonalizable operator on a finite dimensional vector space V . Suppose that U
is a T -invariant subspace. Show that T

∣∣
U

is diagonalizable. �

Solution: Perhaps this is easier than I think, but here is a solution anyway. Consider any basis {u1, · · · ,uk} for
U. Let v1, · · · , vn be a basis forV consisting of eigenvectors of T (since T is diagonalizable). If Span{u1, · · · ,uk} =
V , then {u1, · · · ,uk} is a basis for V . Otherwise, at least one eigenvector vi must fail to be in Span{u1, · · · ,uk}.
We choose such a vi and call it w1 and add it to our list {u1, · · · ,uk,w1} and repeat. In this way we can extend
the given basis to a basis

β = {u1, · · · ,uk,w1, · · · ,wl}

wherewi is an eigenvector and uj ∈ U. Consider the corresponding direct sumU⊕W, and the corresponding
projection P onto U alongW.

We observe that T commutes with P. It suffices to check this for each vector in β. TP(ui) = Tui and PT(ui) =
T(ui) because T(U) ⊆ U and P is a projection onto U. Also TP(wi) = T(0) = 0 and PT(wi) = P(αwi) = 0.
Hence the operators T and P commute. We now forget the basis β and the decomposition V = U⊕W.

Now consider the decomposition of V into eigenspaces for T , i.e. V =
⊕
λ Vλ =

⊕
λ Null(T − λI). Notice

that P(Vλ) = Vλ because P and T commute. (See the solution to Problem 3.) So, we may restrict P to Vλ.
The observation is that (P|Vλ)

2 = P|Vλ so that P|Vλ is a projection. In this way we reduce the statement of
the problem to the case of a projection (rather than a general diagonalizable operator). This means we can
diagonalize P|Vλ , finding bases for each Vλ such that P is diagonal, and we can concatenate these into one basis
γ = (z1, · · · , zn) such that P and T are both diagonal. We form a basis consisting of those zi such that P has a
nonzero entry at that place on its main diagonal. More precisely, let I be the subset of {1, · · · ,n} consisting of
i such that P(zi) = zi. (In other words, i /∈ I if and only if P(zi) = 0.)

We claim that {zi : i ∈ I} is a basis for U. Linear independence is clear. Now let u ∈ U, and write u =
a1z1 + · · ·+ anzn. But then u = Pu = a1P(z1) + · · ·+ anP(zn) =

∑
i∈I aizi, so that this set spans U.

The matrix for T with respect to {zi : i ∈ I} is diagonal, since each zi is an eigenvector of T .

[Remark: My apologies if there is a much easier way to do this problem. I would be surprised if there wasn’t
an easier way, and I would not be surprised if there was a much easier way. However, after thinking about the
other problems, this seemed natural though a bit clumsy.]

Problem 7 (New): Let Si, for i in some index set I, be a collection of diagonalizable operators on a finite
dimensional vector space V . Suppose, for any i, j ∈ I, that SiSj = SjSi. Show that the Si are simultaneously
diagonalizable. [Suggestion: If necessary, first do the case of just two operators S, T . Again, suppose that I is
finite, and try induction.] �

Solution: Induction. The base case is a tautology: a single diagonalizable operator is diagonalizable. Suppose
the result is true for any collection of commuting diagonalizable operator of size at most n− 1. Suppose that
S1, · · · ,Sn are diagonalizable, commuting operators.

Decompose V =
⊕
Vλi into eigenspaces for S1. The Vλi are Sj invariant, so we restrict the n − 1 operators

S2, · · · ,Sn to each Vλi where they are a collection of n − 1 commuting diagonalizable (by Problem 6) oper-
ators. By inductive hypothesis, we can simultaneously diagonalize S2, · · · ,Sn on each Vλi obtaining bases
{bi,1, · · · ,bi,ei for Vλi . The inductive hypothesis only tells us that bi,j is an eigenvector for S2, · · · ,Sn, but since
bi,j ∈ Vλi we see that it is an eigenvector for S1 as well. Concatenating the bases into {b1,1, · · · ,b1,e1 , · · · ,bm,1, · · · ,bm,em}

which is a simultaneous basis of eigenvectors.

Problem 8 (New): Give an easy proof of Problem 1 using Problem 7. �

Solution: A diagonalizable operator is clearly a sum of commuting projections, namely the projections onto
the eigenspaces (see the first paragraph of the solution to Problem 1).

For the harder direction, since projections are diagonalizable we can use Problem 7 on the collection P1, · · · ,Pn.
Once they are simultaneously diagonalized, it is clear that a linear combination of diagonal matrices is diago-
nal, so that T is diagonalizable.
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Note that Problem 3 and Problem 7 are analogous to each other, in the same way that Problem 1 and Problem 5 are
analogous to each other. Notice especially that neither the plain version nor the orthogonal version is more general than
the other. The non-orthogonal versions apply in more contexts, but the orthogonal versions give sharper results. On the
other hand, I do think that Problem 3 and Problem 7 are more general/powerful than Problem 1 and Problem 5, since you
can give easy proofs of 1 and 5 using 7 and 3 respectively.
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